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Abstract

A prototype solar capture, microwave conversion, and transmission (SCMCT) system is
proposed. System design considerations are described, and initial modeling of the SCMCT
system with simulation results is shown. Further, a strategy for prototype testing to validate
and extend upon current research is outlined. Approval of this strategy is requested to enable
the continuation of this research.

1 Overview

The Sun is a star, a nuclear furnace with a power output1 of 3.828�1026 W [7]. Meanwhile,
Earth's global power consumption2 in 2019 was 2.61�1012W [5], 14 orders of magnitude below
the power output of the sun. Even the most powerful artificial fusion reactor could hardly match
the 4.6 billion-year-old, 2 trillion-quadrillion-ton one at the center of the Solar System. However,
Earth-based solar power, while highly successful, has not truly delivered on the full possibilities of
harnessing the energy of the Sun.

The primary difficulties of space-based solar power are twofold. First, high upfront costs and the
difficulties of launching space infrastructure present immense hurdles. Second, the technological
capabilities that would allow the full realization of space-based power to the point it is worth the
cost are not yet possible. Therefore, the primary goal of our present research is the development
of a space-based power transmission system that provides:

� Sustained high-power, high-gain wireless transmission with very low power loss

� Precision long-distance transmission capability, up to interplanetary distances

� Autonomous operation capability with robust failure resistance, multiple layers of redun-
dancy, and assured safety

� All-weather reliability, including maintaining constant reception of power regardless of space
weather and varied conditions in Earth's atmosphere

It is without a doubt that the technologies involved in this system are far from reaching readiness.
However, Abiri et. al. [1] have already demonstrated small-scale versions of this technology in low-
Earth orbit. This research intends to supplement present achievements in the field with further
advances in realizing space-based power.

1. According to the IAU defined value of the solar luminosity L�, after rounding.

2. Found through averaging the provided 2019 global power consumption figure of 22,848 TWh, as stated by the
IEA, over one year.
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2 Theoretical analysis and results

Due to the difficulties of practical testing, a theoretical model of wireless power capture and
transmission was first developed for initial analysis. The conceptual system consists of mirrors and
satellites situated in highly eccentric geosynchronous orbits. The individually-spaced mirrors form
a composite parabolic solar collector, concentrating sunlight to a fixed point. A secondary mirror
at the foci of the composite collector, segmented and also of parabolic design, directs the focused
light into specialized transmitter satellites. These satellites then transmit the power to Earth in
the form of microwaves. The system is planned to be only one of many, with the intent to build
a space-based stellar power collection swarm around geosynchronous and eventually higher orbits
which may one day be able to provide all the energy for the Earth. A simplified diagram of the
system is shown below:
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Solar collectors

Sunlight
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Solar collector configuration

Composite parabolic reflector

Figure 1. An illustration of a portion of the conceptual SCMCT system

For the theoretical modelling, the special case of Maxwell's equations in free space, namely the 3D
electromagnetic wave equation, was used. The electromagnetic wave equation is given by:
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The proposed power transmission system operates at a frequency of 1 GHz, which has been iden-
tified as a candidate frequency for microwave power transmission due to its low atmospheric
attenuation [6]. On initial testing, it was found that numerical simulations of the electromagnetic
wave equation exhibited rapid temporal oscillations that resulted in numerical instabilities. There-
fore, the time-independent variant of the electromagnetic wave equation was used instead. As is
well-known, this is obtained by the separation of variables of the electromagnetic wave equation,
upon the simplifying assumption that the time variation of the electric field follows E� cos !t.
This results in the Helmholtz equation:

r2E+k2E=0; r2B+k2B=0
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From this point on, only the expressions for the electric field are written and it is implied that
the same expressions are true for the magnetic field up to the replacement E!B. The Helmholtz
equation was prepared in variational form (weak form) for obtaining a numerical solution by the
finite element method. By multiplication with a test function �(x), integrating over the simulation
domain 
, and simplifying via the Divergence Theorem, one obtains the general variational form:

k2
Z



��E dV ¡
Z



rJE :rJ� dV+
Z
@


� �rJE dA=0

Where : is the double dot product (tensor contraction for matrices). The boundary conditions
must then be incorporated for a meaningful solution. As a starting case, the boundary conditions
are given as follows:
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Where, respectively:

� The boundary @
P of the (primary) parabolic reflector, which reflects (and thereby focuses)
the waves, with the parabolic dish centered at position rp; the composite collector is modelled
as an approximately solid parabolic dish with perfectly reflective (Neumann) boundaries.

� The boundary @
B (�box�, referring to the rectangular simulation volume) of the 3D space
surrounding the antenna, where waves can pass freely into and out of the region; � is a small
but nonzero value representing the decay of the waves as they propagate away to infinity.
This boundary is not explicitly written out but is present in the transformed boundary
conditions mentioned later.

� The boundary @
W of the secondary reflector, which reflects focused light to direct it to a
central collection point through an opening in the back of the parabolic dish.

� The boundary @
O which is the opening at the bottom of the parabolic dish, where the
concentrated light is directed towards the transmitting satellites. This is also not explicitly
written out as it is directly encoded into the geometry of the primary reflector.

The open boundary condition @
B is approximated by a technique described on the Comsol finite-
element software blog [3], in which a coordinate transform x!�tanhx;y!� tanh y is applied to
extend the domain out to infinity, where � and � are respectively half the length and width of
the domain bounding box. This approximately replicates an open boundary that allows outgoing
electromagnetic waves to radiate outwards in all directions. However, the direct application of the
coordinate transformation results in significant mathematical complexities due to the dependence
of the representation of the variational form on the choice of coordinates. Thus tensors will be used
instead to give expressions of physical laws that are invariant under coordinate transformations.
From this point on, all expressions of the weak form will be given in tensors unless otherwise
specified. All tensors are assumed to be within Euclidean space where upper and lower indices are
equivalent, that is, Ai=Ai. The Einstein summation convention is assumed, in which repeated
indices are implicitly summed over, and all indices take the numerical values of i=1;2;3 unless
otherwise specified.

To begin, the weak form may be expressed with tensors as:
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One may reduce by one dimension to just consider the 2D case, as was done to simplify the problem
for this initial stage of research:
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The old coordinates are denoted xi=x=(x;y), and new coordinates denoted xk=x0=(x0;y 0) where
x0=x0(x) and y 0=y 0(y). A change of variables was applied on the weak form xi!xk. On the first
integral term, the Kronecker delta was used to relabel indices from i!k, by the relationships
�i=�ik�k; Ei=�ki Ek, from which one can substitute into the first integral term to obtain:
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The two Kronecker deltas are contracted over both of their indices, so �i
k �k

i=�ii=�11+�22+�33=3.

Therefore the first term further simplifies to 3k2
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substitution one finds: Z
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Where, after rearrangement and using the Kronecker delta for relabeling the E and � indices (as
shown previously with the first term), becomes:Z
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Taking out the Kronecker deltas allows for further simplification, where �ki �ik=3 due to the double
contraction previously explained:Z
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The third term may be simplified via the tensor transformation law dxj= @xj

@xk
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which one may obtain: Z
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Now substituting in @j=@jxk @k and the two Kronecker delta identities �i=�ik�k and Ei=�kiEk the
result is: Z
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Where, after another double contraction over the Kronecker deltas and rearranging, noting that
@jxk @kxj=1, gives:
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Altogether, after substitution of all simplified terms and ordering the terms such that the quasi-
linear term is second due to software requirements, one obtains the weak form in the transformed
coordinates:
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After which dividing by three from all sides gives the most simplified general form:
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In typical vector calculus notation rather than tensor notation, this may alternatively be written as:
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When applying boundary conditions to the boundary integral, the only contribution is that of
the radiative boundary condition, which reduces to the constant Dirichlet boundary condition
E~ j@
B=� and thus: Z

@
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And therefore the boundary integral vanishes. One may also show, after tedious derivation, that
the Laplacian in a generalized coordinates transform xi!xj takes the form:

r2=@i@ixj@j+@ixj@ixj@j@j

So with the coordinate transforms x0=�tanhx, y 0=�tanh y, the transformed Laplacian becomes:
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Thus the Helmholtz equation in the aforementioned transformed coordinates has the form:
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The geometry of the simulation was parametrized by four constants, the simulation volume width
D and length L, the primary reflector radius R1, secondary reflector radius R2, opening gap radius
b (where the opening is located at the rear of the primary reflector dish), and the primary reflector
anchor point d1. The primary collector and secondary mirror were respectively parametrized as
follows:

x1(t)=d1¡
1
2R1

t2; y1(t)=t; t2[¡R1;¡b][[b;R1]

x2(t)=d1¡
R1
2
+ 1
2R1

t2; y2(t)=t; t2[¡R2;R2]

The bounding box of the simulation were parametrized as follows, for which t2[0;1]:

xT(t)=Lt¡
L
2
; yT(t)=

D
2

xB(t)=Lt¡
L
2
; yB(t)=¡

D
2

xL(t)=¡
L
2
; yL(t)=Dt¡

D
2

xR(t)=
L
2
; yR(t)=Dt¡

D
2
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Simulations were done in FreeFEM++ software [4], with a custom FreeFEM-based solver. This
solver was written in the FreeFEM language and utilizes FreeFEM++'s built-in finite-element solver
and mesh discretizer, but otherwise is completely custom and tailored to the specific simulation
parameters. A solution in transformed (x0; y 0) coordinates was first obtained, before the built-in
polynomial interpolation was used to transform the solution to (x;y) coordinates, as shown in the
subsequent figures.

IsoValue
-0.00132268
0.000717447
0.00207753
0.00343761
0.00479769
0.00615777
0.00751786
0.00887794
0.010238
0.0115981
0.0129582
0.0143183
0.0156783
0.0170384
0.0183985
0.0197586
0.0211187
0.0224788
0.0238388
0.027239

Vec Value
0
0.00136212
0.00272424
0.00408637
0.00544849
0.00681061
0.00817273
0.00953486
0.010897
0.0122591
0.0136212
0.0149833
0.0163455
0.0177076
0.0190697
0.0204318
0.021794
0.0231561
0.0245182
0.0258803

Electric field (spatial components, transformed coordinates x’, y’)

Figure 2. Solution in transformed coordinates (x0; y 0)

IsoValue
-0.000130264
0.000254571
0.000511128
0.000767685
0.00102424
0.0012808
0.00153736
0.00179391
0.00205047
0.00230703
0.00256358
0.00282014
0.0030767
0.00333326
0.00358981
0.00384637
0.00410293
0.00435948
0.00461604
0.00525743

Vec Value
0
0.000263218
0.000526436
0.000789654
0.00105287
0.00131609
0.00157931
0.00184253
0.00210574
0.00236896
0.00263218
0.0028954
0.00315861
0.00342183
0.00368505
0.00394827
0.00421149
0.0044747
0.00473792
0.00500114

Electric field (spatial components, original coordinates x, y)

Figure 3. Solution in physical-space (x;y) coordinates

The simulation was intended as a proof-of-concept and thus it should be emphasized that the simu-
lation results were not of specific significance and should not be intended as research data. However,
several distinctive and possibly promising features did emerge out of the initial simulation. The
electric field strength being highest approximately between the parabolics, and decaying quickly
outside of the immediate vicinity, corresponds with the expected result. However, it should be
noted that the rather weak field variation, in which the differences of the highest and lowest field
strengths is merely 5�10¡3N/C, does not provide sufficient support for these claims. Thus these
are merely deduction from observations and cannot be proven at present without further testing.
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As a separate test of the fidelity of the results, a custom FreeFEM-based solver was tested against
a finite-difference simulation in a similar but much simpler Helmholtz boundary-value problem.
A solver written with the Python findiff library [2], a library that implements finite differ-
ence methods for PDEs, was tested, alongside a slightly different finite-difference solver that used
findiff for simply derivative discretization. The two solvers differed at most by 6.64�10¡13N/C
and as such the rest of the finite-difference solution results are given by that of the primary findiff
solver. The validation test took the form of solving the scalar-valued Helmholtz equation on the
unit square 
= [0;1]� [0;1], with the following boundary conditions, which can be shown to yield
a non-trivial solution:

E(x;0)=3 E(x;1)=10
E(0; y)=6 E(1; y)=1

A FreeFEM-based solver, similar although not identical to the aforementioned fully-featured vector
solver, was compared against the findiff solver. The results are shown below:

IsoValue
0.395626
1.30219
1.90656
2.51093
3.11531
3.71968
4.32406
4.92843
5.5328
6.13718
6.74155
7.34592
7.9503
8.55467
9.15904
9.76342
10.3678
10.9722
11.5765
13.0875

Electric field (spatial components)

Figure 4. Numerical solution obtained by FreeFEM-based (finite element) solver
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Figure 5. Numerical solution obtained by findiff (finite-difference) solver
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Comparison of the numerical solutions from the two solvers showed excellent agreement and the
completion of an important intermediary diagnostic for the primary FreeFEM-based solver. Difer-
ences between the two solutions showed almost zero difference on a number of test points evaluated
from both solutions, as shown below:

(0, 60) (60, 0) (-1, 60) (60, -1) (30, 30) (60, 60) (90, 90) (72, 0) (66, 67) (80, 50)
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Figure 6. Comparison between the FEM and FDM solvers on various test points

The results suggest that the solver shows promise, at least to the extent of present testing. However,
the author would like to note that a further validation test of the vector-valued Helmholtz equation
has not been successfully completed as of the time of writing. Difficulties with performing an inverse
coordinate transformation from the finite-difference numerical solution have yet to be resolved,
among other issues. Two different methods have been attempted, that of polynomial interpolation
as well as a neural network fit, but both do not meet research standards and much further work is
necessary. In addition, it was found that the order of integrals was a significant factor in deciding
the result of the solution, as well as the sign convention used, where there were significantly different
values when changed. It is believed to be a result of the conventions of the FreeFem++ software,
but should continue to be investigated.

3 Planned upcoming research

Further theoretical work, including a more thorough treatment of the power collection system and
theoretical modelling of the power transmission system, is necessary for advancing the research.
More detailed studies of orbits and spacecraft design are also hoped for in upcoming work. In
addition, construction and testing of physical prototypes to augument computational simulations
is also essential. Prototypes are intended to be assembled via 3D printed components treated with
electroless plating to form a smooth, metallic coating, after which specific tests may be performed.
The verification of such prototypes in an experimental setting is highly anticipated to be carried
out in the near future.

4 Disclosures

The author would like to acknowledge the assistance of using LLMs as a source of valuable knowl-
edge and an educational tool. No part of this paper was taken in whole or in part from content
provided by the use of such tools. In addition, the author acknowledges the great assistance
provided by the FreeFEM++ software documentation, including its many examples which included
example solvers of the Helmholtz equation. Another excellent reference was the website of Nicolás
Guarín-Zapata, whose work on finite-difference methods on infinite domain was invaluable.3

3. See Finite differences in infinite domains https://nicoguaro.github.io/posts/infinite_fdm/

8

https://nicoguaro.github.io/posts/infinite_fdm/
https://nicoguaro.github.io/posts/infinite_fdm/
https://nicoguaro.github.io/posts/infinite_fdm/
https://nicoguaro.github.io/posts/infinite_fdm/
https://nicoguaro.github.io/posts/infinite_fdm/
https://nicoguaro.github.io/posts/infinite_fdm/
https://nicoguaro.github.io/posts/infinite_fdm/
https://nicoguaro.github.io/posts/infinite_fdm/
https://nicoguaro.github.io/posts/infinite_fdm/
https://nicoguaro.github.io/posts/infinite_fdm/
https://nicoguaro.github.io/posts/infinite_fdm/
https://nicoguaro.github.io/posts/infinite_fdm/
https://nicoguaro.github.io/posts/infinite_fdm/
https://nicoguaro.github.io/posts/infinite_fdm/
https://nicoguaro.github.io/posts/infinite_fdm/
https://nicoguaro.github.io/posts/infinite_fdm/


This paper is released into the public domain and the author withdraws all rights to this work,
in accordance Project Elara guidelines. For more details about the project, please see https://
elaraproject.github.io/
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